Archivo de la etiqueta: física

Conceptos Fundamentales de Física y Química: Materia, Energía y Movimiento

Materia y sus Propiedades

  1. Cambio físico: Es aquel cambio en el que, después de que se produzca, se tienen las mismas sustancias.
  2. Cambio químico: Es aquel cambio en el que, después de que se produzca, se tienen sustancias diferentes a las iniciales.
  3. Magnitud física: Es toda propiedad de los fenómenos que se puede medir de forma objetiva.
  4. Unidad: Es una cantidad de una magnitud física que se utiliza para medirla.
  5. Masa: Es la magnitud que mide la cantidad de materia que tiene una sustancia.
  6. Volumen: Seguir leyendo “Conceptos Fundamentales de Física y Química: Materia, Energía y Movimiento” »

Conceptos Fundamentales de Física: Unidades, Magnitudes y Fluidos

Sistemas de Unidades

  • Para obtener información completa acerca de un fenómeno, es necesaria una descripción cualitativa y cuantitativa del mismo. Por ejemplo:
    • Descripción cualitativa: Esta tarde ha llovido en Madrid.
    • Descripción cuantitativa: El volumen de la lluvia ha sido de 50 l/m2.
  • Para cuantificar cualquier magnitud, se requiere la asignación de un valor numérico referido a una unidad de medida tomada como patrón.
  • Un sistema de unidades es un conjunto consistente de unidades de medida. Seguir leyendo “Conceptos Fundamentales de Física: Unidades, Magnitudes y Fluidos” »

Naturaleza de la Luz: Teorías, Reflexión, Refracción y Aplicaciones

Primeras Teorías Científicas sobre la Luz: ¿Partículas u Ondas?

En el siglo XVII, aparecieron las primeras teorías científicas sobre la naturaleza de la luz:

Formulario de Ecuaciones y Conceptos Clave en Física

Movimiento Parabólico: Ecuaciones de la trayectoria

  1. Vx = Vxi = Vi cos ϑi
  2. X = Xi + VXi(t-to) si xi=0 y ti=0
  3. X = Vi(cos ϑi) T (Dirección paralela a la aceleración, MRUV)
  4. Vy = Vyi – g (t-to)
  5. Vy = Vi sen ϑi – gt
  6. y = Yi + Vyi(t-to) – 1/2 g (t-to)^2
  7. y = Vi(sin ϑi) t – ½ gt^2

Retomando las ecuaciones 2 y 4:

  1. x = Vi(cos ϑi)t
  2. y = Vi(sen ϑi) t – 1/2 g t^2

Despejando t de 3 y reemplazando en 4, obtenemos:

5) Y = (tan ϑi) x – (g / 2(Vi cos ϑ)^2) . x^2

Tiempo de altura máxima: A partir de la ecuación 3 Seguir leyendo “Formulario de Ecuaciones y Conceptos Clave en Física” »

Conceptos Fundamentales de Física: Energía, Gravitación, Ondas y Mecánica Cuántica

Teorema de Conservación de la Energía Mecánica

Supongamos que sobre un cuerpo actúan varias fuerzas, conservativas y no conservativas. La resultante de todas ellas será: Podemos calcular el trabajo de la resultante como suma de dos trabajos:

donde y llamando energía mecánica a E = Ec + Ep podemos escribir que: es decir, la variación de energía mecánica en un sistema es igual al trabajo realizado por las fuerzas no conservativas de ese sistema.

De aquí se deduce el siguiente Teorema de Seguir leyendo “Conceptos Fundamentales de Física: Energía, Gravitación, Ondas y Mecánica Cuántica” »

Fundamentos de la Electrostática: Ley de Coulomb, Campo Eléctrico y Energía Potencial

Sean dos cargas puntuales Q y q separadas una distancia r, que se encuentran en reposo. La fuerza que la carga Q ejerce sobre q se denomina fuerza electrostática y viene dada por la ley de Coulomb:

La fuerza de interacción entre dos cargas puntuales es repulsiva o atractiva, dependiendo de que las cargas sean del mismo o de distinto signo. Está dirigida a lo largo de la línea que las une y su intensidad es directamente proporcional al producto de sus cargas e inversamente proporcional al cuadrado Seguir leyendo “Fundamentos de la Electrostática: Ley de Coulomb, Campo Eléctrico y Energía Potencial” »

Problemas Resueltos de Física: Mecánica Clásica

Problemas Resueltos de Cinemática, Dinámica y Energía

Cinemática

1. Si en t=4,7 h un auto se encuentra 67 km al este de Valparaíso, y en t=13 h el auto se encuentra 33 km al oeste de Valparaíso, obtenga su velocidad media.

Vmedia = (-33 – 67) / (13 – 4,7) = -100 / 8,3 = -12,0 km/h al oeste.

2. Considere un automóvil que se desplaza rectilíneamente a una rapidez constante de 45 km/h hacia el este. Halle la distancia que recorre durante 120 minutos.

d = v * t = 45 km/h * 2 h = 90 km

3. Se deja caer Seguir leyendo “Problemas Resueltos de Física: Mecánica Clásica” »

Ejercicios Resueltos de Integrales de Línea: Guía Práctica

Integrales sobre curvas – Hoja de Ejercicios

  1. Calcular los puntos inicial y final, el vector velocidad y las longitudes de las curvas recorridas por los caminos siguientes:

    • c(t) = (cos(t), sen(t), 1 + t), t ∈ [0, π]

    • c(t) = (t, t2, 2 – t2), t ∈ [0, 1]

    • c(t) = (et cos(t), et sen(t), et), t ∈ [0, π/2]

  2. Encuentra una fórmula para la longitud de un arco de gráfica y = f(x) con x ∈ [a, b].

  3. Si un camino en el plano c viene descrito en coordenadas polares como c→* = (r(t), θ(t)), tSeguir leyendo “Ejercicios Resueltos de Integrales de Línea: Guía Práctica” »

Fórmulas y Conceptos Clave de Física: Cinemática, Dinámica, Trabajo y Energía

MRU-MRUA

Movimiento Rectilíneo Uniforme (MRU) y Movimiento Rectilíneo Uniformemente Acelerado (MRUA):

Conceptos Básicos del Movimiento: Tiempo, Espacio, Velocidad y Aceleración

1. Tiempo y Espacio: Fundamentos del Movimiento

Todos los cuerpos se mueven, cambian continuamente de forma o posición. El tiempo y el espacio se combinan creando el movimiento a diferentes escalas de observación.

2. ¿Nos Estamos Moviendo?

Las sucesivas posiciones forman una línea denominada trayectoria, que representa el camino seguido por el móvil. El movimiento de un objeto es el cambio de posición del mismo respecto a otros objetos que sirven de sistema de referencia.

La Relatividad de la Seguir leyendo “Conceptos Básicos del Movimiento: Tiempo, Espacio, Velocidad y Aceleración” »