Archivo de la etiqueta: álgebra lineal

Resolución de Sistemas de Ecuaciones Lineales y Cálculo Numérico

Resolución de Sistemas de Ecuaciones Lineales y Cálculo Numérico

Problema 41

if(A.dim1()==0 || A.dim1()!=A.dim2()) return 0.;

if(A.dim1()==1) return A[0][0];

real determinante=0.;
  for(int k=0;k    Array2D B(A.dim1()-1,A.dim1()-1);
    for(int i=0;i      for(int j=0;j        if(j        else  B[i][j]=A[i+1][j+1];
      }
    }
    if(k%2==0) determinante+=A[0][k]*mn_determinante_recursivo(B);
    else determinante-=A[0][k]*mn_determinante_recursivo(B);
  }
  return determinante; Seguir leyendo “Resolución de Sistemas de Ecuaciones Lineales y Cálculo Numérico” »

Propiedades de las Matrices y Determinantes

Propiedades de los Determinantes

1. El determinante de una matriz es igual al de su transpuesta.

2. Si una matriz cuadrada tiene una fila (o columna) de ceros, el determinante es 0.

3. Si se intercambian dos líneas paralelas de una matriz cuadrada, su determinante cambia de signo.

4. Si una matriz cuadrada tiene dos líneas paralelas iguales, su determinante es 0.

5. Al multiplicar todos los elementos de una fila de una matriz cuadrada por un mismo factor, el determinante se multiplica por ese factor. Seguir leyendo “Propiedades de las Matrices y Determinantes” »

Espacios Fundamentales en Álgebra Lineal

1. Espacio Fila de A

La eliminación gaussiana actúa sobre una matriz A para producir una matriz escalonada U. El espacio fila de U se obtiene directamente: su dimensión es el rango r y sus filas distintas de cero constituyen una base. Cada operación elemental no altera el espacio fila, ya que cada fila de la matriz U es una combinación lineal de las filas originales de A. Como cada paso puede revertirse mediante una operación elemental, entonces fil(A) = fil(U); por lo tanto, fil(A) tiene la Seguir leyendo “Espacios Fundamentales en Álgebra Lineal” »

Relaciones de Orden, Equivalencia y Espacios Vectoriales

Relaciones de Orden

Una relación de orden R en un conjunto A verifica las siguientes propiedades:

  • Propiedad reflexiva: ∀a ∈ A, aRa
  • Propiedad antisimétrica: Sean a, b ∈ A. Si aRb y bRa, entonces a = b.
  • Propiedad transitiva: Sean a, b, c ∈ A. Si aRb y bRc, entonces aRc.

Orden Total

Un orden total cumple las propiedades anteriores y además relaciona cualquier par de elementos del conjunto:

∀a, b ∈ A se verifica que aRb o bRa.

Relaciones de Equivalencia

Una relación de equivalencia R en un conjunto Seguir leyendo “Relaciones de Orden, Equivalencia y Espacios Vectoriales” »

Matrices y funciones matemáticas

Calculo dominio:

El dominio es R menos los valores que anulan al denominador, está formado por todos los elementos que tienen imagen, el dominio de una función polinómica es R.

Menor de una matriz:

Es el determinante de alguna submatriz obtenido mediante la eliminación de una o más de las columnas de la matriz principal.

Combinación lineal:

Es cualquier vector v obtenido de la forma v =t1u1+ t2u2 +tmum siendo t1, t2… números reales cualesquiera

Rango:

Es el máximo número de vectores linealmente Seguir leyendo “Matrices y funciones matemáticas” »