Archivo de la etiqueta: termodinámica

Ciclo Frigorífico: Fundamentos y Optimización

Ciclo Frigorífico

Introducción

Transformación isobárica: Se expande a presión constante.
Transformación isocórica: Aumenta presión y temperatura a volumen constante.
Transformación isotérmica: Disminuye volumen a temperatura constante.
Transformación adiabática: Q=0, aumenta presión, disminuye volumen, aumenta temperatura.
Transformación isoentrópica: Entropía constante.

Problemática del Sistema Ideal

Problemas: El compresor no puede aspirar la mezcla líquido-vapor y el expansor disminuye Seguir leyendo “Ciclo Frigorífico: Fundamentos y Optimización” »

Sistemas de lubricación y termodinámica en motores

1. Conceptos básicos de energía y termodinámica

1.1. ¿Qué es la energía?

En física, la energía se define como la capacidad para realizar un trabajo.

1.2. ¿Qué es el calor?

El calor es una forma de energía, por lo que también hay una equivalencia entre unidades de energía y de calor.

1.3. ¿Qué es la potencia?

La capacidad de realizar un trabajo en una determinada cantidad de tiempo es la potencia.

1.4. ¿Qué es el rendimiento?

El rendimiento de un sistema energético es la relación entre Seguir leyendo “Sistemas de lubricación y termodinámica en motores” »

Termodinámica Química: Conceptos Fundamentales y Aplicaciones

Variables Termodinámicas

Variables Extensivas

Aquellas que dependen de la cantidad de materia, como la masa o el volumen.

Variables Intensivas

No dependen de la cantidad de materia, como la densidad o la concentración.

Variable Termodinámica

Cada una de las características que definen el sistema termodinámico.

Funciones de Estado

Algunas variables dependen solo del estado en el que se encuentra el sistema y no de la evolución que ha experimentado este para llegar hasta él, como el volumen que ocupa, Seguir leyendo “Termodinámica Química: Conceptos Fundamentales y Aplicaciones” »

Variables, Funciones y Procesos Termodinámicos

Variables Termodinámicas

Variables Extensivas

Aquellas que dependen de la cantidad de materia, como la masa o el volumen.

Variables Intensivas

No dependen de la cantidad de materia, como la densidad o la concentración.

Variables de Estado

Algunas variables dependen solo del estado en el que se encuentra el sistema y no de la evolución que ha experimentado este para llegar hasta él, como el volumen que ocupa, la presión o la temperatura a la que se encuentra.

Variables que No son de Estado

Como el calor Seguir leyendo “Variables, Funciones y Procesos Termodinámicos” »

Introducción a la Termodinámica y Ondas

1. Temperatura de un cuerpo

Para definir la temperatura desde un punto de vista físico, hay que definir el concepto de equilibrio térmico y movimiento térmico:

1.1 Equilibrio térmico

Cuando dos sustancias a diferentes temperaturas se encuentran próximas, se produce entre ellas un intercambio de energía que tiende a crear el equilibrio térmico, que se produce cuando ambas temperaturas se igualan.

1.2 Movimiento térmico

Esta teoría explica los fenómenos que acontecen en los cuerpos a partir de Seguir leyendo “Introducción a la Termodinámica y Ondas” »

Fundamentos de Química: Enlace Metálico, Termodinámica y Espontaneidad

Enlace Metálico

Teoría de Bandas

Actualmente, el modelo de bandas es el más aceptado para explicar el enlace metálico, ya que considera los electrones de enlace como pertenecientes al conjunto metálico, pero encontrándose en niveles energéticos determinados.

Cuando se unen dos átomos, al formarse la molécula se originan dos orbitales moleculares: uno enlazante y otro antienlazante. Cuando el número de átomos que se unen es mayor, se formarán muchos orbitales moleculares, la mitad enlazantes Seguir leyendo “Fundamentos de Química: Enlace Metálico, Termodinámica y Espontaneidad” »

Teoría del enlace químico: Modelo de bandas y principios de la termodinámica

Teoría del enlace químico: Modelo de bandas

Bandas: Actualmente es el modelo más aceptado ya que considera los electrones de enlace pertenecientes al conjunto metálico pero encontrándose en niveles energéticos determinados. Cuando se unen dos átomos, al formarse la molécula se originan dos orbitales moleculares, uno enlazante y otro no enlazante. Cuando el número de átomos que se unen es mayor se formarán muchos orbitales moleculares, la mitad enlazantes y la otra mitad no. En una estructura Seguir leyendo “Teoría del enlace químico: Modelo de bandas y principios de la termodinámica” »

Termodinámica Química: Energía Interna, Calor y Trabajo

Termodinámica Química

Energía Interna de un Sistema

La energía interna de un sistema se considera la suma de la energía total que tiene cada partícula que compone el sistema, es decir, la suma de las energías cinéticas y potenciales que tiene cada partícula. Se designa por U.

No podemos conocer el valor de la energía interna para el estado en que está un sistema, puesto que no podemos conocer la energía cinética y potencial de las partículas, pero sí podemos conocer las variaciones que Seguir leyendo “Termodinámica Química: Energía Interna, Calor y Trabajo” »

Termodinámica Química: Energía Interna, Calor y Trabajo

Energía Interna de un Sistema

La energía interna de un sistema se considera la suma de la energía total que tiene cada partícula que compone el sistema, es decir, la suma de las energías cinéticas y potenciales que tiene cada partícula. Se designa por U.

No podemos conocer el valor de la energía interna para el estado en que está un sistema, puesto que no podemos conocer la energía cinética y potencial de las partículas, pero sí podemos conocer las variaciones que se producen de energía Seguir leyendo “Termodinámica Química: Energía Interna, Calor y Trabajo” »

Termodinámica Química: Energía Interna, Calor y Trabajo

ENERGÍA INTERNA DE UN SISTEMA

La energía interna de un sistema se considera la suma de la energía total que tiene cada partícula que compone el sistema, es decir, la suma de las energías cinéticas y potenciales que tiene cada partícula. Se designa por U.

No podemos conocer el valor de la energía interna para el estado en que está un sistema, puesto que no podemos conocer la energía cinética y potencial de las partículas, pero sí podemos conocer las variaciones que se producen de energía Seguir leyendo “Termodinámica Química: Energía Interna, Calor y Trabajo” »