Archivo de la etiqueta: álgebra lineal

Álgebra Lineal Esencial: Fundamentos de Matrices, Vectores y Sistemas

Álgebra Lineal Esencial: Fundamentos de Matrices y Vectores

Producto de Matrices: Propiedades Esenciales

  • Asociativa: (A · B) · C = A · (B · C)
  • Distributiva:
    • A · (B + C) = A · B + A · C
    • (B + C) · A = B · A + C · A
  • No Conmutativa: En general, A · BB · A

Transposición de una Matriz: Propiedades Clave

  1. (A + B)t = At + Bt
  2. (At)t = A
  3. (k · B)t = k · Bt (donde k es un escalar)
  4. (A · B)t = Bt · At

Matriz Inversa (A-1)

La matriz inversa A-1 de una matriz A cumple que A · A-1 = A-1 · A = I, donde Seguir leyendo “Álgebra Lineal Esencial: Fundamentos de Matrices, Vectores y Sistemas” »

Conceptos Clave Espacios Vectoriales y Aplicaciones Lineales

Espacios Vectoriales

1. Definición de subespacio vectorial de ℝⁿ

Indica cuándo un subconjunto no vacío de ℝⁿ es un subespacio vectorial de ℝⁿ.

Sea V (o ℝⁿ) un espacio vectorial, y sea W un subconjunto de V no vacío (W ⊂ V, W ≠ ∅).

Decimos que W es un subespacio vectorial de V si (W, +, ∗) tiene estructura de espacio vectorial con las mismas operaciones de V, es decir, si verifica lo siguiente:

Álgebra Lineal: Conceptos Fundamentales de Espacios Vectoriales y Aplicaciones

Espacios Vectoriales

1.- Definición de subespacio vectorial de Rn

Indica cuándo un subconjunto no vacío de Rn es un subespacio vectorial de Rn:

Sea V (o Rn) un espacio vectorial, y sea W un subconjunto no vacío de V (W ⊂ V, W ≠ ∅). Decimos que W es un subespacio vectorial de V si (W, +, ∗) tiene estructura de espacio vectorial con las mismas operaciones de V, es decir, si verifica:

  • u + v ∈ W, ∀u, v ∈ W
  • αu ∈ W, ∀α ∈ R, ∀u ∈ W

2.- Enunciar la condición necesaria y suficiente Seguir leyendo “Álgebra Lineal: Conceptos Fundamentales de Espacios Vectoriales y Aplicaciones” »

Conceptos Fundamentales de Álgebra Lineal y Cálculo: Espacios Vectoriales, Aplicaciones Lineales y Funciones

Espacios Vectoriales

Definición de Base de un Espacio Vectorial V

Sean 𝑢1, 𝑢2, …, 𝑢𝑛 un conjunto de vectores del espacio vectorial V. Se dice que un conjunto 𝐵 = 〈𝑢1, 𝑢2, …, 𝑢𝑛〉 es una base del espacio vectorial V si:

  1. 𝐵 es linealmente independiente.
  2. 𝐵 es generador de V → 〈𝐵〉 = 𝑉.

Por lo tanto, todo vector de V se puede escribir como una combinación lineal única de la base. Es decir, una base de un espacio vectorial V es un conjunto de vectores linealmente Seguir leyendo “Conceptos Fundamentales de Álgebra Lineal y Cálculo: Espacios Vectoriales, Aplicaciones Lineales y Funciones” »

Conceptos Fundamentales de Álgebra Lineal: Espacios Vectoriales y Matrices

Espacios Vectoriales

Un espacio vectorial sobre un cuerpo ℝ es un conjunto V dotado de dos operaciones: una operación interna (suma de vectores) y una operación externa (producto de un vector por un escalar), que verifican una serie de propiedades.

Propiedades de la Operación Interna (Suma de Vectores)

La suma de vectores (V, +) cumple:

  1. Propiedad asociativa: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉
  2. Propiedad conmutativa: 𝑢 + 𝑣 = 𝑣 + 𝑢 ∀ 𝑢, 𝑣 Seguir leyendo “Conceptos Fundamentales de Álgebra Lineal: Espacios Vectoriales y Matrices” »

Fundamentos de Álgebra Lineal: Matrices, Subespacios y Aplicaciones

Fundamentos de Álgebra Lineal

Obtener la matriz de P en las bases canónicas

Sea vector **x** cualquiera de **Rn1** y sean *x1, x2…* sus coordenadas. Existirá un vector **y** tal que *F(x) = y*. Sean *y1, y2…* sus coordenadas en **Bc**. **y** pertenece a **Rn2**.
*(y1…yn2) = (F(e1) F(e2) F(e3)…F(en1)) * (x1…xn1)*
**Y = PX**
**M(BRn1, BRn2)**
Ejemplo: Cuando te da *f(1,1) = (1,3,2)* y *f(1,-1) = (1,1,0)*, sacar implícitas y hacer una matriz de tantas filas como términos de *f* y luego:

Fundamentos de Álgebra Lineal: Espacios Vectoriales, Matrices y Aplicaciones

Espacio Vectorial

Se llama espacio vectorial sobre un cuerpo ℝ a todo conjunto V dotado de dos operaciones: una operación interna (suma de vectores) y una operación externa (producto de un vector por un escalar), y que verifican una serie de propiedades.

Propiedades de la operación interna

La suma de vectores (𝑉, +) cumple:

  1. Propiedad asociativa (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑢 + 𝑤) ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉
  2. Propiedad conmutativa 𝑢 + 𝑣 = 𝑣 + 𝑢 ∀ 𝑢, 𝑣 ∈ 𝑉
  3. Tiene Seguir leyendo “Fundamentos de Álgebra Lineal: Espacios Vectoriales, Matrices y Aplicaciones” »

Fundamentos del Álgebra Lineal: Espacios Vectoriales, Transformaciones y Teoremas Clave

Base de un Espacio Vectorial: Teorema

Un vector xE puede expresarse de forma única como combinación lineal de los vectores de una base de E. Sea B = {e1, e2, …, eq} una base del espacio vectorial E. Entonces, x = α1e1 + α2e2 + … + αqeq.

Demostración:

Supongamos que x puede expresarse de dos formas distintas en función de la base B = {e1, e2, …, eq}:

x = α1e1 + α2e2 + … + αqeq

x = α’1e1 + α’2e2 + … + α’qeq

Restando ambas expresiones:

0 = (α1 – α’1)e1 + (α2 – α’2)e2 + … Seguir leyendo “Fundamentos del Álgebra Lineal: Espacios Vectoriales, Transformaciones y Teoremas Clave” »

Aplicaciones Lineales, Isomorfismos y Diagonalización de Matrices: Conceptos Clave

Aplicaciones Lineales e Isomorfismos

Sean E y F dos espacios vectoriales sobre K y sea T : E→F una aplicación. Diremos que T es una aplicación lineal si verifica:

  • T(u + v) = T(u) + T(v), ∀u, v ∈ E.
  • T(αu) = αT(u), ∀α ∈ K, ∀u ∈ E.

Isomorfismo: Si T : E→ F es una aplicación lineal biyectiva (inyectiva y suprayectiva), diremos que T es un isomorfismo.

Núcleo e Imagen

Sea T : E→F una aplicación lineal.

Explorando Matrices, Determinantes y Sistemas de Ecuaciones Lineales

Matrices, Determinantes y Sistemas de Ecuaciones Lineales

Matriz: Es un conjunto ordenado de números dispuestos en filas y columnas. Si tenemos m filas y n columnas, diremos que es de orden o dimensión m x n.

Matriz Inversa: Dada una matriz A de orden n, llamaremos matriz inversa de A, a una matriz A-1 que verifica que A·A-1=A-1·A=I. No siempre existe A-1. Si una matriz A tiene inversa se dice que es regular y si no, singular.

Propiedades de las Matrices

Trasposición:

Propiedades:

  1. Asociativa: (AB) Seguir leyendo “Explorando Matrices, Determinantes y Sistemas de Ecuaciones Lineales” »