Archivo de la categoría: Física

Problemas Resueltos de Electroestática: Campo y Potencial de Cargas Puntuales

2026-Modelo 3.A: 

Una partícula con carga −2 nC está situada en el punto

 

Datos:


q1 = -2 nC = -2×10⁻⁹ C en (-5,0) m
q2 = +2 nC = +2×10⁻⁹ C en (5,0) m
K = 9×10⁹ N·m²/C²
Punto A(5,4) m

A) Campo en A:


Vector r1A = A – (-5,0) = (10,4) m → |r1A| = √(10²+4²) = √116 ≈ 10.77 m
Vector r2A = A – (5,0) = (0,4) m → |r2A| = 4 m
E1A = K·q1/|r1A|³ · r1A = 9×10⁹·(-2×10⁻⁹)/(10.77³)·(10,4) ≈ (-0.1442, -0.05768) N/C
E2A = K·q2/|r2A|³ · r2A = 9×10⁹·(2×10⁻⁹)/(4³)·( Seguir leyendo “Problemas Resueltos de Electroestática: Campo y Potencial de Cargas Puntuales” »

Problemas Resueltos de Electrostática: Campo Eléctrico, Potencial y Trabajo

Modelo 3.A: Una partícula con carga −2 nC

Datos:


q1 = -2 nC = -2×10⁻⁹ C en (-5,0) m
q2 = +2 nC = +2×10⁻⁹ C en (5,0) m
K = 9×10⁹ N·m²/C²
Punto A(5,4) m

A) Campo en A:


Vector r1A = A – (-5,0) = (10,4) m → |r1A| = √(10²+4²) = √116 ≈ 10.77 m
Vector r2A = A – (5,0) = (0,4) m → |r2A| = 4 m
E1A = K·q1/|r1A|³ · r1A = 9×10⁹·(-2×10⁻⁹)/(10.77³)·(10,4) ≈ (-0.1442, -0.05768) N/C
E2A = K·q2/|r2A|³ · r2A = 9×10⁹·(2×10⁻⁹)/(4³)·(0,4) ≈ (0, 1.125) N/C
EA = E1A + Seguir leyendo “Problemas Resueltos de Electrostática: Campo Eléctrico, Potencial y Trabajo” »

Fundamentos de la Materia: Estados, Fenómenos y la Ley de Conservación de la Energía

Cambios de Estado de la Materia y sus Transformaciones

Los cambios de estado de la materia son las modificaciones que sufre la materia por acción de ciertos factores, como por ejemplo, la temperatura.

Tipos de Cambios de Fase

A continuación, se describen los principales cambios de estado:

Ejercicios Resueltos de Campo Eléctrico y Potencial para Selectividad

Modelo 3.A: Partícula con carga de -2 nC

Datos:

  • q₁ = -2 nC = -2 × 10⁻⁹ C en (-5, 0) m
  • q₂ = +2 nC = +2 × 10⁻⁹ C en (5, 0) m
  • K = 9 × 10⁹ N·m²/C²
  • Punto A(5, 4) m

a) Campo en A:

Vector r₁ₐ = A – (-5, 0) = (10, 4) m → |r₁ₐ| = √(10² + 4²) = √116 ≈ 10.77 m

Vector r₂ₐ = A – (5, 0) = (0, 4) m → |r₂ₐ| = 4 m

E₁ₐ = K · q₁ / |r₁ₐ|³ · r₁ₐ = 9 × 10⁹ · (-2 × 10⁻⁹) / (10.77³) · (10, 4) ≈ (-0.1442, -0.05768) N/C

E₂ₐ = K · q₂ / |r₂ₐ|³ Seguir leyendo “Ejercicios Resueltos de Campo Eléctrico y Potencial para Selectividad” »

Entendiendo la Acústica Arquitectónica: Propagación y Acondicionamiento del Sonido

Acústica Arquitectónica


Mecanismos de Propagación del Sonido


En función del ámbito de aplicación y los objetivos, encontramos diferentes disciplinas:

  • Acústica Urbanística: Protección frente a ruidos exteriores en zonas urbanas y entornos de edificaciones.
  • Acondicionamiento Acústico: Mejora de la calidad acústica en el interior de recintos.
  • Aislamiento Acústico: Protección frente a ruidos y vibraciones en edificios.

Estas disciplinas tienen en cuenta dos tipos de propagación y transmisión Seguir leyendo “Entendiendo la Acústica Arquitectónica: Propagación y Acondicionamiento del Sonido” »

Conceptos Fundamentales de Física: Propiedades de la Materia, Cambios de Estado y Ley de Hooke

Propiedades de los Sistemas Físicos

Clasificación de las Propiedades

Fundamentos de Electromagnetismo y Ondas Estacionarias: Principios Físicos Clave

1 alternador

Disponemos de un campo magnético uniforme en el espacio de intensidad B . En él

introducimos una espira conductora definida por el vector superficie S . Hacemos girar la

superficie por su eje de simetría a una velocidad angular constante de valor ω rad/segundos, dentro del campo magnético. Buscamos la expresión del flujo magnético que atraviesa la superficie. Se explica con el siguiente producto escalar. φ= N. B. S = N.B. S. Cos (α)

siendo N el número de espiras del solenoide, Seguir leyendo “Fundamentos de Electromagnetismo y Ondas Estacionarias: Principios Físicos Clave” »

Fundamentos de la Física del Campo Gravitatorio: Conceptos Clave y Dinámica Orbital

2 CAMPO GRAVITATORIO TIPOS DE FUERZAS


Las fuerzas se dividen en dos grandes grupos: fuerzas de contacto y fuerzas a distancia. Fuerzas de contacto: Presentes en las interacciones que se llevan a cabo a través de conexiones materiales entre cuerpos (fuerzas de rozamiento). Fuerzas a distancia: Son las fuerzas con las que interactúan los cuerpos sin necesidad de que exista una conexión material entre ellos (fuerzas gravitatorias, electromagnéticas y nucleares).

CONCEPTO DE CAMPO

Denominamos campo Seguir leyendo “Fundamentos de la Física del Campo Gravitatorio: Conceptos Clave y Dinámica Orbital” »

Cálculo de Inercia y Aplicaciones de Energía en Sistemas Rotacionales

Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende con velocidad constante de 8 cm/s. El radio del tambor del torno es de 30 cm y la masa de la polea es despreciable.

Un péndulo compuesto está formado por una varilla de 200 g de masa y 40 cm de longitud y dos esferas macizas de 500 g y 5 cm de radio, equidistantes 8 cm de los extremos de la barra. El péndulo se haya suspendido de un eje perpendicular Seguir leyendo “Cálculo de Inercia y Aplicaciones de Energía en Sistemas Rotacionales” »

Fundamentos del Magnetismo: Imanes, Campos y Dipolos Magnéticos

¿Qué es el Magnetismo?

El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Aunque todos los materiales son influidos en mayor o menor medida por la presencia de un campo magnético, algunos presentan propiedades magnéticas fácilmente detectables. Este fenómeno también tiene otras manifestaciones, como la luz.

Cada electrón actúa como un pequeño imán y, en ciertos materiales, tienden a orientarse en la misma dirección, Seguir leyendo “Fundamentos del Magnetismo: Imanes, Campos y Dipolos Magnéticos” »