Archivo de la etiqueta: probabilidad

Conceptos Clave de Probabilidad y Estadística: Fórmulas y Demostraciones

Conceptos Clave de Probabilidad y Estadística: Fórmulas y Demostraciones

1. Condición Necesaria y Suficiente de Independencia

Dados los sucesos 𝐴 y 𝐵, 𝐴 es independiente de 𝐵 si y solo si 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

Demostración:

Parte 1: Si 𝐴 y 𝐵 son independientes, por la definición de independencia se cumple 𝑃(𝐴|𝐵) = 𝑃(𝐴). Por otro lado, por la definición de probabilidad condicional, se tiene 𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵) / 𝑃(𝐵) Seguir leyendo “Conceptos Clave de Probabilidad y Estadística: Fórmulas y Demostraciones” »

Probabilidad y Estadística en la Ingeniería de Procesos: Ejercicios Resueltos

Ejercicios de Probabilidad y Estadística Aplicada a la Ingeniería de Procesos

3.- Para el estudio de ciertos accidentes laborales, se han definido los sucesos siguientes:

A = El accidente se produce por Acción insegura por parte del trabajador.

C = El accidente se produce por Condición insegura en el lugar de trabajo.

Se sabe que: P(A) = 0,36; P(C) = 0,28 y
= 0,12

a) Calcule la probabilidad de accidente por Acción insegura pero no por Condición insegura [P(A – C)].

P(A – C) = P(A) –

P(A – C) = Seguir leyendo “Probabilidad y Estadística en la Ingeniería de Procesos: Ejercicios Resueltos” »

Conceptos Básicos de Probabilidad y Distribuciones: Una Introducción Completa

Conceptos Básicos de Probabilidad

Aleatoriedad: Imposibilidad de predecir. Existe una forma de describir el comportamiento de la población en estudio gracias a la distribución de probabilidades, que distribuye probabilidades entre los valores y describe el comportamiento esperado de la variable. La variable aleatoria cuantifica los resultados posibles de un experimento aleatorio.

Experimento Aleatorio

Cualquier ensayo o prueba que pueda repetirse un gran número de veces en condiciones homogéneas, Seguir leyendo “Conceptos Básicos de Probabilidad y Distribuciones: Una Introducción Completa” »

Ejercicios Resueltos de Probabilidad y Estadística con Statgraphics

Problema 1

a)

Valor: -2, 0, 2, 4

Probabilidad: 0.15, 0.3, 0.35, 0.2

a.1) Determinar la función de probabilidad y la función de distribución acumulada y dibujar sus gráficas.

Función de probabilidad:

f(x) = 0.15 si x = -2; 0.3 si x = 0; 0.35 si x = 2; 0.2 si x = 4; 0 en el resto de casos. (Representación gráfica: eje x con los valores y eje y con la probabilidad de 0 a 1)

Función de distribución acumulada:

F(x) = 0 si x < -2; 0.15 si -2 ≤ x < 0; 0.45 si 0 ≤ x < 2; 0.8 si 2 ≤ x < Seguir leyendo “Ejercicios Resueltos de Probabilidad y Estadística con Statgraphics” »

Probabilidad: Experimentos Aleatorios y Cálculo de Probabilidades

Probabilidad: Experimentos Aleatorios: Un experimento aleatorio es un experimento cuyo resultado no se puede predecir. Ejemplo: El lanzamiento de un dado es un experimento aleatorio ya que el número que va a salir tras el lanzamiento no se puede predecir.

Espacio Muestral: El espacio muestral de un experimento aleatorio es el conjunto formado por todos los resultados posibles. Para designar al espacio muestral de un experimento aleatorio se suele utilizar la letra E. Ejemplo: En el lanzamiento de Seguir leyendo “Probabilidad: Experimentos Aleatorios y Cálculo de Probabilidades” »

Probabilidad y Medidas Estadísticas

Probabilidad de sucesos

Al definir los sucesos hablamos de las diferentes relaciones que pueden guardar dos sucesos entre sí, así como de las posibles relaciones que se pueden establecer entre los mismos. Vamos a ver ahora cómo se refleja esto en el cálculo de probabilidades.

a) Un suceso puede estar contenido en otro

Entonces, la probabilidad del primer suceso será menor que la del suceso que lo contiene.

Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga Seguir leyendo “Probabilidad y Medidas Estadísticas” »

Probabilidad: Experimentos Aleatorios y Cálculo de Probabilidades

PROBABILIDAD: Experimento aleatorios


Un experimento aleatorio es un experimento cuyo resultado no se puede predecir.Ejemplo; El Lanzamiento de un dado es un experimento aleatorio ya q el nº q va salir tras el lanzamiento no se puede predecir.

Espacio muestral


El espacio muestral de un experimento aleatorio es el conjunto formado por todos los resultados posibles. Para designar al espacio muestral de un experimento aleatorio se suele utilizar la letra E. Ejemplo: En el lanzamiento de un dado el espacio Seguir leyendo “Probabilidad: Experimentos Aleatorios y Cálculo de Probabilidades” »

Análisis de tablas bidimensionales y probabilidad

Análisis de tablas bidimensionales

Tabla bidimensional o de doble entrada estudia dos características, sirven para organizar y analizar datos que involucran dos variables. Componentes: Filas y columnas, márgenes. Uso y aplicaciones: frecuencias bidimensionales (registrar cantidad de observaciones que caen en cada categoría), relaciones entre variables (explorar la asociación o independencia identificando patrones), análisis estadístico (calcular medidas de tendencia central), toma de decisiones Seguir leyendo “Análisis de tablas bidimensionales y probabilidad” »

Probabilidad y Estadística: Conceptos Básicos

Espacio Muestral y Sucesos

El espacio muestral (EM) es el conjunto de todos los resultados posibles de un experimento aleatorio.

Un suceso o evento es un resultado posible o un conjunto de ellos (en un experimento aleatorio (EA)). Representan un subconjunto del EM.

Probabilidad de un Suceso

La probabilidad de un suceso es una medida de la posibilidad de que ese suceso ocurra.

Todos los elementos del EM (ciertos EA) son igualmente probables. Probabilidad de que ocurra 1 suceso aleatorio: Casos favorables Seguir leyendo “Probabilidad y Estadística: Conceptos Básicos” »

Ejercicios de Matemáticas: Álgebra, Cálculo y Probabilidad

EJERCICIO 1

a) Razone si el punto de coordenadas (7, 3) pertenece al recinto.

Sustituimos el punto (7,3) y vemos si verifica las tres inecuaciones a la vez.

3x + 4y    28; → 3(7) + 4(3)    28  →33   28, cierto luego la verifica 5x + 2y    42; →5(7) + 2(3)   42 → 41    42, cierto luego la verifica x – y   0; → (7) – (3)    0 → 4    0, cierto luego la verifica

Luego el punto de coordenadas (7,3) pertenece al recinto.

b) Represente dicho recinto y halle sus vértices. Seguir leyendo “Ejercicios de Matemáticas: Álgebra, Cálculo y Probabilidad” »