Archivo de la etiqueta: electromagnetismo

Trabajo, Energía, Potencia y Fuerzas Fundamentales: Un Viaje por la Física

Trabajo:

Hablamos de trabajo cuando una fuerza (expresada en newton) mueve un cuerpo y libera la energía potencial de este; es decir, un hombre o una máquina realiza un trabajo cuando vence una resistencia a lo largo de un camino. Por ejemplo, para levantar una caja hay que vencer una resistencia, el peso P del objeto, a lo largo de un camino, la altura d a la que se levanta la caja.

Energía:

Se define como energía aquella capacidad que posee un cuerpo (una masa) para realizar trabajo luego de Seguir leyendo “Trabajo, Energía, Potencia y Fuerzas Fundamentales: Un Viaje por la Física” »

La Luz y el Sonido: Ondas Electromagnéticas y Sonoras

La Luz y el Sonido: Ondas Electromagnéticas y Sonoras

Introducción

En este documento, exploraremos las características y propiedades de la luz y el sonido, dos fenómenos físicos fundamentales que nos permiten percibir el mundo que nos rodea.

La Luz

Naturaleza Ondulatoria y Corpuscular

La luz se puede estudiar desde dos perspectivas: como una onda electromagnética (modelo ondulatorio) o como un flujo de partículas llamadas fotones (modelo corpuscular). La teoría ondulatoria explica fenómenos Seguir leyendo “La Luz y el Sonido: Ondas Electromagnéticas y Sonoras” »

Conceptos Fundamentales de Física Clásica y Moderna

Leyes de Kepler

  1. Los planetas giran alrededor del Sol describiendo órbitas elípticas, estando este en uno de los focos de la elipse. Perihelio: punto más cercano al Sol. Afelio: punto más lejano al Sol.
  2. El radio vector de un planeta barre áreas iguales en tiempos iguales.
  3. La relación entre los periodos orbitales al cuadrado y los radios medios de las órbitas al cubo de cada planeta son constantes.

Ley de Gravitación Universal

Propuesta por Newton: dos cuerpos con masa se atraen con una fuerza Seguir leyendo “Conceptos Fundamentales de Física Clásica y Moderna” »

Física de Ondas y Electromagnetismo: Conceptos Fundamentales

Física de Ondas y Electromagnetismo

Movimiento Ondulatorio

Ecuación de onda: y(x;t) = A sen(wt ± Kx + φo) (+ Izquierda – Derecha)

  • ω (rad/s) = 2π/T (frecuencia angular)
  • K (nº ondas rad/m) = 2π/λ (número de onda)
  • V (velocidad de propagación) = λ/T
  • Vcuerda tensa = √(Tensión/μ) (velocidad en una cuerda tensa)
  • μ = Masa/Longitud (densidad lineal)
  • Vmax = Awcos(…) (velocidad máxima)
  • Amax = ±Aw² (aceleración máxima)

Ondas Estacionarias

Resumen de Física: Ondas, Electromagnetismo y Movimiento Ondulatorio

Movimiento Ondulatorio

M. ondulatorio y(x;t)= Asen(wt±Kx+φo) (+ Izq – Derech)  W(rad/s)=2π/T K(nºondas rad/m)=2π/λ V(velo. d propagacion)=λ/T Vcuerda tensa=√(Tension/μ) μ=Masa/Longitud Vmax=Awcos(…) Amax=±Aw2

Cuerda/tubo 2 extrem λ=2L/n f=n*Vp/2L Cuerda/tubo 1 extrem L=n*λ/4 f=v*n/4L

Sonido

I(w/m2)=P/4πR2  Nivel I sonora dB 10log(I/Io) Reflexión y refracción  senθi/Vi=senθr/vr Ley snell ni*θi=nr*θr Vmedio= Vvacio/n Ángulo límite=θi para k θr=90  f=cte

Intensidad: Es la Seguir leyendo “Resumen de Física: Ondas, Electromagnetismo y Movimiento Ondulatorio” »

Conceptos básicos de electromagnetismo y mecánica

Biografía de Benjamin Franklin

El científico, inventor y político estadounidense Benjamin Franklin nació en Boston el 17 de enero de 1706 y murió el 17 de abril de 1790 en Filadelfia. Además de ser uno de los padres fundadores de EEUU, ha pasado a la historia de la física por sus estudios sobre electricidad.

Biografía de Charles Darwin

Charles Darwin era un naturalista británico que propuso la teoría de la evolución biológica por selección natural. Darwin definió la evolución como «descendencia Seguir leyendo “Conceptos básicos de electromagnetismo y mecánica” »

Introducción a la Física: Electromagnetismo, Óptica y Física Moderna

Electromagnetismo

Inducción electromagnética

Consiste en la aparición de una corriente eléctrica en un circuito cuando varía el número de líneas de inducción magnéticas que lo atraviesan.

Flujo magnético

A través de una superficie es una medida del número de líneas de inducción que atraviesan dicha superficie.

Ley de Lenz

El sentido de la corriente inducida es tal que se opone a la causa que la produce.

Ley de Faraday

La fuerza electromotriz inducida en un circuito es igual a la velocidad Seguir leyendo “Introducción a la Física: Electromagnetismo, Óptica y Física Moderna” »

Electromagnetismo: Interacciones y Fenómenos

Ley de Coulomb

Las primeras experiencias al medir la fuerza de atracción o repulsión entre cargas eléctricas puntuales, llegaron a la siguiente conclusión: «la fuerza de atracción o de repulsión entre dos cargas eléctricas puntuales q1 y q2 es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que las separa». K es la llamada constante de Coulomb.

Diferencias entre Campo Gravitatorio y Eléctrico

Problemas de Electromagnetismo: Inducción Magnética y Aplicaciones

Alambre Infinito Doblado

Un alambre infinitamente largo lleva una corriente I [A] y es doblado de la forma indicada en la figura. Encontrar la densidad de campo magnético en los puntos P1 y P2.

r=√((ax)²+a²)

B=u0/4π*∫(Idx x R/R³/2

B=u0*I/4π*(xa)/((ax)²+a²)^3/2

B=U0I/4π(1+1/√2)

Alambre Superconductor de Niobio

Un alambre de niobio superconductor, de 0.2 [cm] de diámetro, es capaz de llevar una corriente de hasta 1900 [A]. ¿Cuánto vale el módulo de la inducción magnética inmediatamente Seguir leyendo “Problemas de Electromagnetismo: Inducción Magnética y Aplicaciones” »

Ley de Lorentz y Fuerzas Magnéticas

Ley de Lorentz

Ley de Lorentz: Lorentz determinó que la fuerza magnética 1.jpg, que actúa sobre una partícula, es directamente proporcional a su carga, qr, y al producto vectorial de la velocidad de la partícula, v, por el campo magnético externo, 2.jpg: 3.jpg A esta ley se le denomina ley de Lorentz. Analizando la expresión matemática, se observa que si la velocidad es cero, la fuerza magnética también lo es. Y que si la velocidad y el campo magnético son dos vectores paralelos (formando 0° o 180°) Seguir leyendo “Ley de Lorentz y Fuerzas Magnéticas” »