Archivo de la etiqueta: electromagnetismo

Conceptos Fundamentales de Electricidad, Magnetismo y Física Nuclear

Electricidad

Fuerza Electromotriz (FEM): Es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado.

Conexión en Paralelo: Es una conexión donde los puertos de entrada de todos los dispositivos conectados coinciden entre sí, lo mismo que sus terminales de salida.

Conexión en Serie: Es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, Seguir leyendo “Conceptos Fundamentales de Electricidad, Magnetismo y Física Nuclear” »

Conceptos Clave de Electromagnetismo: Dieléctricos, Efecto Hall, Inducción y Polarización

Conceptos Clave de Electromagnetismo

Dieléctricos

Al insertar un dieléctrico entre las placas de un condensador, el voltaje disminuye, al igual que el campo eléctrico, siempre y cuando la carga permanezca constante. Existen dos tipos principales de dieléctricos:

  • Aquellos constituidos por moléculas con momento dipolar permanente.
  • Aquellos que se polarizan al aplicar un campo eléctrico externo.

La polarización del dieléctrico induce un campo eléctrico que reduce el campo eléctrico neto dentro Seguir leyendo “Conceptos Clave de Electromagnetismo: Dieléctricos, Efecto Hall, Inducción y Polarización” »

Conceptos Fundamentales de Electromagnetismo y Máquinas Eléctricas

Conceptos Fundamentales de Electromagnetismo

La fuerza dF que ejerce un elemento de conductor dl’ situado en el punto O y recorrido por la corriente I’, sobre el elemento dl situado en M y recorrido por la corriente I, tiene las siguientes características:

  • Está situada en el plano P definido por dl’ y M.
  • Es normal a dl.
  • Su sentido es tal que tiende a superponer I dl sobre I’ dl’ siguiendo el camino más corto.
  • Su módulo es:

Donde:

Fundamentos de Electromagnetismo: Preguntas y Respuestas

Preguntas y Respuestas sobre Electromagnetismo

Campo Eléctrico

Las líneas de campo creadas por un plano uniformemente cargado:

  • B. Son perpendiculares al plano y equidistantes entre sí.

La fuerza eléctrica que actúa sobre un electrón:

  • A. Tiene la misma dirección que el campo eléctrico, pero sentido opuesto.

¿Cuál es el potencial eléctrico en la superficie de una esfera de cobre de 5 cm de diámetro cargada con 2 nC?

  • A. 719 V

En todos los puntos del interior de un conductor en equilibrio electrostático: Seguir leyendo “Fundamentos de Electromagnetismo: Preguntas y Respuestas” »

Preguntas y Respuestas sobre Campos Eléctricos y Circuitos


Imagen


1.- ¿Cuál de los siguientes puntos en el campo eléctrico tiene el potencial mayor?
e) 5

Imagen


1.- ¿Cuál de los siguientes puntos en el campo eléctrico tiene el potencial menor?
c) 3

Imagen     4
1.- En la figura, el vector que mejor representa la dirección de la intensidad de campo eléctrico al punto x para la línea equipotencial de 200 V es

Imagen

2.- En el punto C del dibujo (todas las cargas vienen en mC):
e) La fuerza tiene dirección 4 si ponemos una carga positiva.

Imagen


2.- En el punto C del dibujo (todas Seguir leyendo “Preguntas y Respuestas sobre Campos Eléctricos y Circuitos” »

Componentes Electrónicos: Semiconductores, Diodos, Transistores y Relés

Semiconductores

Los semiconductores no son ni conductores ni aislantes. A temperatura ambiente, son malos conductores, pero pueden conducir electricidad con energía externa. Ejemplos son el silicio y el germanio.

Para mejorar su conductividad, se someten a un proceso de dopaje. Pueden ser:

  • Tipo P: El dopante tiene menos electrones, creando huecos que permiten la circulación de electrones. Ejemplos: aluminio, boro y galio.
  • Tipo N: El dopante aporta electrones.

Unión PN y Polarización

Se forma al unir Seguir leyendo “Componentes Electrónicos: Semiconductores, Diodos, Transistores y Relés” »

Electromagnetismo: Conceptos Fundamentales y Aplicaciones

Ley de Coulomb

La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.

La ley de Coulomb es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello Seguir leyendo “Electromagnetismo: Conceptos Fundamentales y Aplicaciones” »

Interacciones Fundamentales en Física: Una Guía Completa

Interacciones Fundamentales en Física

Objetos Físicos

Todo aquello que puedes tocar y que ocupa un lugar en el espacio.

Sistemas Físicos

Un sistema físico es un agregado de objetos o entidades materiales entre cuyas partes existe una vinculación o interacción de tipo causal. Todos los sistemas físicos se caracterizan por:

  1. Tener una ubicación en el espacio-tiempo.
  2. Tener un estado físico definido sujeto a evolución temporal.
  3. Poderle asociar una magnitud física llamada energía.

Para la inmensa Seguir leyendo “Interacciones Fundamentales en Física: Una Guía Completa” »

Magnitudes, Medidas, Electricidad y Magnetismo

T3. Magnitudes, Medidas y Escalas

3.1. Medir

Medir es comparar el valor de una magnitud con otra que se toma como unidad.

3.2. Magnitudes básicas

Son independientes de todas las demás. Son la longitud, masa, tiempo, temperatura, intensidad de corriente, cantidad de materia e intensidad luminosa.

3.3. Magnitud derivada

Pueden expresarse a partir de las magnitudes básicas mediante expresiones matemáticas.

3.4. Medidas directas

Son las que se obtienen usando un instrumento de medida adecuado.

3.5. Medidas Seguir leyendo “Magnitudes, Medidas, Electricidad y Magnetismo” »

El Campo Magnético: Representación, Características y Efectos

Representación del Campo Magnético

Las líneas de inducción magnética nos permiten visualizar un campo magnético. Al igual que las líneas de campo eléctrico, estas líneas se trazan de modo que cumplen las condiciones siguientes:

Líneas de Campo

  • Son tangentes a las líneas de inducción B y tienen el mismo sentido que éstas.
  • La densidad de las líneas de campo (número de líneas por unidad de superficie) es proporcional al |B|

Diferencias con Respecto al Campo Gravitatorio (g) y al Campo Eléctrico Seguir leyendo “El Campo Magnético: Representación, Características y Efectos” »