Archivo de la etiqueta: base vectorial

Conceptos Clave Espacios Vectoriales y Aplicaciones Lineales

Espacios Vectoriales

1. Definición de subespacio vectorial de ℝⁿ

Indica cuándo un subconjunto no vacío de ℝⁿ es un subespacio vectorial de ℝⁿ.

Sea V (o ℝⁿ) un espacio vectorial, y sea W un subconjunto de V no vacío (W ⊂ V, W ≠ ∅).

Decimos que W es un subespacio vectorial de V si (W, +, ∗) tiene estructura de espacio vectorial con las mismas operaciones de V, es decir, si verifica lo siguiente: